Exercise 25

The city of New Orleans is located at latitude $30^{\circ} \mathrm{N}$. Use Figure 9 to find a function that models the number of hours of daylight at New Orleans as a function of the time of year. To check the accuracy of your model, use the fact that on March 31 the sun rises at 5:51 AM and sets at 6:18 PM in New Orleans.

Solution

FIGURE 9
Graph of the length of daylight from March 21 through December 21 at various latitudes Source: Adapted from L. Harrison, Daylight, Twilight, Darkness and Time (New York: Silver, Burdett, 1935), 40.

According to Figure 9, the model function for a city at latitude $30^{\circ} \mathrm{N}$ is the magenta curve. It's sinusoidal and begins at the equilibrium level, so a sine function will be used.

$$
\sin t
$$

The amplitude is 2 because the highest number of hours is 14 while the lowest is 10 .

$$
2 \sin t
$$

The period is 365 days, so the coefficient of t is $2 \pi / 365$.

$$
2 \sin \frac{2 \pi}{365} t
$$

Since the curve starts on day 80 of the year, t will be replaced by $t-80$ to shift the graph 80 units to the right.

$$
2 \sin \left[\frac{2 \pi}{365}(t-80)\right]
$$

Finally, add 12 to the function to shift the graph up by 12 units.

$$
2 \sin \left[\frac{2 \pi}{365}(t-80)\right]+12
$$

March 31 is day 90 of the year, and the sun is up for 12 hours and 27 minutes. Check the value given by the model.

$$
2 \sin \left[\frac{2 \pi}{365}(90-80)\right]+12 \approx 12.34 \approx 12 \text { hours and } 20 \text { minutes }
$$

